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Thermally stimulated currents due to multiple-trapping 
carrier transport: I. Gaussian transport 
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Majakowskiego 11/12,80-952 Gdafisk, Poland 

Received 4 November 1991 

A m .  Non-isothermal carrier transport in an insulator with trapping states is studied 
for the case of approximate thermal equilibrium between free and trapped caniers. The 
temperaturedependencesofthe trap paramete rsandof themimscopiccarriermobilityare 
taken into account. It is shown that the carrier packet in the sample has a Gaussian shape, 
independently of the form of the energetic trap distritution. On this basis, a simple formula 
describing thermally stimulated currents (‘rsc) is obtained. Its acnvacy is estimated by 
comparison with the results of Monte Carlo calculations for model trap dbtributions. 
Methods of determining the trap parameters from the measured TSC curves are considered. 

1. Introduction 

Measurements of thermally stimulated currents (TSC) are a useful and widely applied 
techniqueinthe study of trap levelsin insulators andsemiconductors. In theconventional 
theory of TSC (e.g. [1-4]), it is assumed that the TSC course is determined uniquely by 
the processes of carrier trapping/detrapping and recombination. The time variation of 
the spatial carrier distribution in the sample during measurements is disregarded. As a 
consequence, the theory predicts that the shape and the position of the TSC peak on the 
temperature scale depend, aside from material parameters, entirely on the heating rate. 

Since the mid-1970s another theory of TSC has been developed, which takes into 
account explicitly the movement of the camer packet in the sample. It is presupposed 
that a thin sheet of excess carriers is initially generated by light, ionizing radiation, etc. 
near one of the sample surfaces. With increase of the sample temperature, camers of 
one sign are quickly neutralized on the nearer electrode. Carriers of opposite sign drift 
through the whole sample thickness under the action of the external field applied to the 
sample, Carrier recombination occurs only up to complete separation of camers of 
opposite sign. The initial rise of the current is then due to an increase in the camer 
packet velocity, while the subsequent decay is caused by carrier neutralization at the 
collecting electrode. 

The described ‘TSC drift experiment’ is analogous to isothermal measurement of the 
carrier time of flight (TOF). For this reason, the development of its theoretical description 
has been stimulated by achievements in the theory of the TOF method [5-111. Similarly 
to the isothermal case, two basic mechanisms of carrier transport-multiple trapping 
[12-181 and hopping [19,20]-have been considered, for both non-dispersive as well as 
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dispersive transport regimes. Among other things, it was shown that the shape of the 
‘IX curve and the temperature for which the maximum of the TSC peak occurs should 
depend not only on the heating rate but also on the sample thickness and the field 
strength (even if high-field effects, such as the Poole-Frenkel one, are absent). This 
prediction was verified experimentally for poly(N-vinylcarbazole) [21], polyphenyl- 
quinoxaline [22] and crystalline anthracene doped with phenothiazine [23]. Recently, 
‘TSC drift measurements’ were carried out for polymethylphenylsilane [24,25]. 

In spite of considerable progress, the mentioned theory of TSC is still incomplete. As 
regards non-dispersive multiple-trapping transport, the general formula describing TSC 
was derived solely for the case of a single trapping level [16]. Some results concerning 
this case were obtained earlier by Sam06 and SamoC [I21 and Plans et al [13] .  For traps 
distributed in energy, only formulae determining the initial rise and the maximum 
temperature of TSC have been obtained up till now [14]. Moreover, in all the previous 
research the temperature dependences of carrier mobility and of some trap parameters 
were disregarded. The present work aims to give a full analytical description of TSC in 
the considered case, as well as numerical verification of the formulae obtained. In a 
following paper (II), some new analytical and numerical results on dispersive multiple- 
trapping TSC are presented. 

2. Formulation of the problem 

2.1. Basic assumptions 

In the multiple-trapping model the carriers are assumed to move in the conduction (or 
valence) band, being temporarily immobilized in traps situated in the energy gap. 
According to the conditions of the ‘TSC drift experiment’ excess carrier transport of only 
one sign is considered. The density of these carriers is assumed to exceed significantly 
the equilibrium density of thermally generated carriers (the case of an insulating solid). 
On the other hand, the excess carrier density should be small enough to ensure the 
uniformity of the electric field in the sample (the small-signal case) as well as negligible 
trap occupancy. The last condition implies that the carrier capture probability is inde- 
pendent of the density of trapped carriers. Moreover, camer diffusion is neglected, 
which is justified for sufficiently high fields. Unlike the previous papers, we take into 
account the temperature dependences of the microscopic carrier mobility, the carrier 
capture coefficient and the frequency factor. These parameters are time-dependent in 
the case of non-isothermal transport. 

2.2. Transport equations 

We shall assume that carrier transport takes place along the direction of the x axis, 
perpendicular to the sample surfaces positioned at x = 0 and x = d (d = sample thick- 
ness). Inorder tosimplify theformulae, thenewspacevariabler = x/poEisintroduced, 
where p a  is the free-camer mobility at the initial moment (t = 0) and E is the electric 
fieldstrength. The free- and trapped-camer densities are denoted by n(z,  t) andn,(z, f), 
respectively. The density of carriers per unit energy in traps of depth E is denoted by 
n;(z ,  t,  E) .  Then the equationsgoveming carrier transport are 113,141 

a[n(z, t )  + nt(z, t ) ] / a t  + u(t) an(r, t)/az = 0 
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E t  

n,(z, t) = n; (2, t, e) de. 
SP 

(3) 

Here u(f) = p(t) /po,  where p(f) is the microscopic carrier mobility, C,(E, t) is the camer 
capture coefficient, N,(E) is the trap density per unit energy, E: and E, are the limits of 
the trap distribution, and finally rr(e, t) is the mean lifetime of the trapped carrier, given 
by 

T ~ ( E ,  t )  = P-'(E, t )  exp[e/kT(t)] (4) 
with Y ( E ,  I) = frequency factor, k = Boltzmann constant and T(t)  = sample tempera- 
ture. The energy E is measured from the edge of the conduction (valence) band. The 
frequency factor and the &er capture coefficient are interrelated by the detailed 
equilibrium principle: 

Y ( E ,  4 = CdE, t)Nefr(t) (5 )  
where Ne&) .X T3fi(f)  stands for the effective density of states in the conduction 
(valence) band. Equation (1) is the continuity equation while equation (2) describes the 
kinetics of carrier trapping/detrapping. 

Equations (2) and (3) can be transformed to a more compact form [14]. Integrating 
equation (2) by turns with respect to t and E variables, taking into account equation (3), 
and setting n;  (2, 0, E )  = 0, one obtains 

@(t,  t')n(z, t') dt' (6) 

where the function 
dt" 

@(f, t') = I' C,(E, f')Nt(E) exp (- [: -) de. 
T,(E,  I") 

s: 

(7) 

The above formulae have a simple interpretation. The function @(I, t') determines the 
probability that a carrier that is free at time t' is trapped in a time unit and remains in 
the trap until time f. The integrand in equation (6) represents, therefore, the density of 
carriers captured within the time interval (t', t' + df') and remaining in the traps until 
timet. 

The current intensity I@)  induced in the external circuit by carrier motion is equal to 
the conduction current intensity in the sample averaged over its thickness (e.g. [SI). In 
our notation 

I(t)  = - n(z,  t )  dz 
nor0 

where Io = enopaESis theinitial current intensity(e = elementarycharge,no = density 
of generated carriers, averaged over sample thickness, S = sample cross-sectional area) 
and ro = d/poE is the trap-free time of flight, corresponding to the initial temperature. 

2.3. Thermal equilibrium approximation 

From the initial moment of their generation, the carriers redistribute themselves 
between theconduction (valence) band and the trap levels. Finally, approximate thermal 
equilibrium between freeand trappedcarriersisestablished. In what follows, we assume 
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that the time for &er thermalization is short compared to the considered timescale, 
which implies that t S t r ( 6 ,  t) for an arbitrary trap level. In such a case, equation (6) 
describing the trapping/detrapping kinetics can be simplied. It is seen that the integral 
in the exponential factor in (7) is then much larger than unity, except fort' = t. Thus, 
the function cP(t, t') differs significantly from zero only for a very small difference of the 
arguments. The free-carrier density in equation (6) can then be replaced by the initial 
terms of its Taylor series, 

an(z, t )  n(~, t ')  = n(z, t )  - (t - t') - 
at  

which results in the equation 

where 

(9) 

The last term in equation (10) approximately takes into account the deviations of the 
free- and trapped-carrier densities from their equilibrium values. This results fromthe 
fact that equation (lo), with the last term omitted, can be obtained by setting 
an; (2 ,  t ,  &)/at  = 0 in equation (Z), i.e. by assuming exact thermal equilibrium [14]. 

To calculate the above integrals we use the following formula for the integral in 
equation (7): 

which isvalid for onlyslightlydifferingintegrationlimits, andreplace C,(E. t') by Cl(&', t). 
Taking into account the inequality f > rr(e, f), E: =s E S q, one obtains 

@-'( t )  = 1 -!- 1' Ct(E, t)N,(E)t,(€, r) de 

tn(t) = 1 Ct(E, t)Nr(E)T?(E, t )  dE. 

(14) 

(15) 

e: 
'I 

EO 

These formulae can be rewritten in a clearer form. Introducing the free-carrier lifetime 
t t ( t ) ,  given by 

et  

r;'(t) = j Ct(&, t)N1(E) dE (16) 
6: 

and denoting by a bar the averaging over energy with the weight Ct(&', ~)N,(E), we have 
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The function O(t) is therefore approximately equal to the mean time fraction at which 
the camer remains free, corresponding to moment f. In the case of fast trapping, when 
q(t) < K(t), the value @(I) = q(t)/?$) Q 1. 

The formulation of the initial condition for the system of equations (1) and (10) 
encounters some difficulties, because equation (IO) is valid only after carrier ther- 
malization. We assume that the mean distance travelled by the carrier up to this time is 
much shorter than the sample thickness, and that the relation between free and trapped 
carriers is then given by equation (lo), with the last term on the RHS dropped. In such a 
case 

n(z,O) = n,roO(0)6(z) (19) 
with S(z) = Dirac delta function, where for simplicity the time of carrier thermalization 
is set to zero. 

3. Analytical results 

3.1. Solution of transportequationr 

By eliminating the trapped-carrier density from equations (1) and (10) we obtain the 
second-order differential equation describing the evolution of the free-carrier density: 

This equation does not seem to have a simple analytical solution and some further 
approximations are necessary. Assuming the last term in equation (20) to be small 
compared to the other ones, the perturbation method can be applied. Ignoring that term 
for a moment, one gets 

Making use of this equation, the time derivatives of the function n(z, f) in the last term 
in (20) can be expressed by the function n(z, t )  itself and by its space derivatives. 
Retaining only the term that contains the second-order space derivative, we find 

(22) 
azn(z, t) 

azz 
= 0. an(z t) 5 (w) i- u(t) - - r , ( t )02(t)u2(f)  

at @(t) az 

It may be checked that all the omitted terms are small compared to the first or the second 
terms in (22), provided that the function r,(t) and its time derivative assume sufficiently 
small values. 

Equation (22) can be integrated after the following change of variables, n(z, t) = 
@(t)n*[y(z, 0,  &)I, where 

Y ( Z ,  t )  = z - &) (23) 

;(I) = O(r')u(t') dt' (24) 
I 
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E(t) = 1' r.(t')Q3(t')uZ(t') dt' 
0 

The resulting equation has the form of a diffusion equation in one dimension, 

an*ly, E)/aE - a2n*(y, E)/ay2 = 0 (26) 

n*(y, 0) = noao%J). (27) 

n*(y,  E )  = [nozo/2(nE)'"l exp(-yZ/4E). (28) 

while the initial condition (19) turns out to be 

Using the elementary solution of the diffusion equation (e.g. [26]), we get 

Returning to the original variables, we find the expression determining the free-carrier 
density: 

The trapped-carrier density can be calculated now from equation (10). Omitting the 
term that contains z8(t), we obtain 

Thus, under our approximations, the carrier packet has a Gaussian shape. The 'centroid' 
and the RMS s read of the carrier packet are given by the formulae (z(t)) = g ( t )  and 

tends to zero, the formulae (29) and (30) reduce to those obtained in [14] under the 
assumption of exact thermal equilibrium between free and trapped carriers. This proves 
that the finite spread of the carrier packet originates from incomplete carrier ther- 
malization. 

The resulting TSC can be calculated by inserting the free-carrier density (29) into 
integral (8). Replacing the lower limit of integration by - m, which is justified when the 
ratio ~ ' l 2 ( t ) / ~ ( t )  4 1, we obtain 

u(f) = [2E(t)]' P 2, respectively. If the relative dispersion of the carrier packet u(t)/(r(t)) 

where erf(. . .) is the error function. As follows from this formula, the initial rise of the 
TSC and the time z, corresponding roughly to the TSC maximum are given by 

Equation (33) shows that the time re corresponds to the effective carrier transit time 
across the sample. The formulae (29)-(33) are quite general. As may be checked, they 
reproduce all the partial results obtained previously [12-14,161. Because of numerous 
approximations, it is difficult to give the precise conditions under which the derived 
formulae are reliable. However, one can expect their accuracy to improve as the carrier 
densities approach the equilibrium values, i.e. as the relative dispersion of the carrier 
packet decreases. Thus, formulae (29) and 30) and formula (31) should be accurate for 
small values of the ratios &'lI2(t)/C(t) and 5' I 2(r,)/ro, respectively. 
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In thispaper, wedealmainlywiththecaseofcarrier generationat thesamplesurface. 
One can also obtain solutions of the transport equation (22) corresponding to carrier 
generation in the whole sample volume. However, such solutions seem to be of less 
interest. Since carriers of both sign are then generated in the sample, their applicability 
is restricted to the case of negligible carrier recombination during the whole TSC run. In 
general, transport of both positive and negative carriers would then contribute to 
the measured current, which makes the TSC analysis more difficult. Some formulae 
corresponding to uniform carrier generation in the sample are given in appendix 1. 

3.2. Discussion 

In order to study the main features of the TSC, we have to specify the mode of sample 
heating, the temperature dependences of the transport and trap parameters, as well as 
the form of the trap distribution. We assume that the sample temperature increases 
linearly in time: 

with TO = initial temperature,P = heatingrate. Suchaheatingschemeiscommonlyused 
in~~cmeasurements. In what follows, all the time-dependent functions are expressed in 
terms of the sample temperature. 

The temperature dependence of the free-carrier mobility can be approximated in a 
limited temperature range by p ( T )  az T", where the parameter a depends on the carrier 
scattering mechanism. In the case of covalent semiconductors, for scattering on acoustic 
phonons and on charged impurities, a equals -3/2 and 3/2, respectively (see e.g. [27]). 
Thus, we have 

The temperature dependences of the carrier capture coefficient and the frequency factor 
have been discussed, for example, by Kivits and Hagebeuk [28]. The corresponding 
formulae are 

T(f) = To + pt (34) 

u(T) = (T/To)a. (35) 

Ct(T) = C t o ( T / T o ) ' ~ - b  (36) 

v(7') = vo(T/To)'-* (37) 

where the parameter b depends on the functional shape of the potential energy near the 
trapping centre (0 < b < 4). In particular, for neutral and coulombic centres b equals 0 
and 2, respectively. Here, the possible energy dependence of Ct(&, 7') and V ( E ,  T )  is 
disregarded. 

As far as the model trap distributions are concerned, we choose monoenergetic and 
power distributions in the form 

where N,,, is the trap hensityperunit sample volume. The trap distribution (39) includes 
the special cases of uniform (c = 0) and linear (c = 1) distributions. To ensure con- 
vergence of the integrals in (14) and (lS), the condition c > -1 must be fulfilled. 

With the aid of the above formulae, the functions O(f ) ,  zs(f), &) and E(t) can be 
approximately calculated (appendix 2). Below, only the h a 1  formulae are given, which 
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describe the initial TSC rise, the temperature T, = T(re) corresponding to the maximum 
of the nc, as well as the E(T,)/s?, ratio. The latter quantity is proportional to the square 
of the relative dispersion of the carrier packet at temperature T,. For a single trapping 
level (38) one obtains 

while for a power trap distribution (39) one gets 

Here, Q, = Ioro is the initial charge generated in the sample, r0 = rt(To), r(. . .) is the 
Euler gamma function and the parameter T,determines the width ofthe trapdistribution 
(39), - E! = kT,. In the calculations it was assumed that TcS T. The charge Qoequals 
the area under the TSC curve and is therefore a measurable quantity. 

It should be noted that equations (40)-(42) can be obtained from (43)-(45) by setting 
formally c = -1. For this reason, further discussion is based on equations (43)445). 
According to them, the shape of the TSC curve is characterized mainly by the maximum 
trap depth cl, as well as by the form of the trap distribution and the temperature 
dependence of the microscopic k r i e r  mobility (via parameters c and U ,  respectively). 
With suitably chosen parameters, the TSC curves corresponding to a discrete trap level 
and a power trap distribution may be identical. Thus, the nc measurements allow us to 
obtain information about the trap distribution only if the temperature dependence of 
the free-carrier mobility is known upriori. For example, this is the case when the TSC 
are measured in doped crystalline materials [U]. The shape of the TSC peak is almost 
insensitive to the temperature dependence of the C,(T) and v ( T )  functions (to the 
parameter b),  which iduences only the degree of carrier packet dispersion, i.e. the n c  
course near the maximum. Therefore, in practice no information about the kind of 
trapping centrescan be inferred. Onecan recognize that the possible energydependence 
of C,(E, r)  and Y(E, T )  also affects solely the dispersion of the carrier packet. This 
followsfromthefact that theintegrandinequation(14),determiningthefunctionO(r), 
contains the ratio Cl(&, T)/v(E, 7'), which is independent of energy (cf. equations (4) 
and (5)). 

According to equations (43) and (a), it is convenient to analyse the TSC data by 
plotting hl,. versus T-I and T;I versus In(E/pd). Both plots allow us to determine 
independentlythesame quantities, which provides atest of theconsistencyofthe theory. 
These plots are expected to be almost linear for E, kT, since. the power functions of T 
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and T, on the RHS of equations (43) and (44) then affect the TSC curve only slightly. If 
theexperimentalplotsrevealsomecurvature and the valueofthe parameterais known, 
one can determine the parameter c and distinguish between trap distributions (38) and 
(39). Otherwise, the concrete model of the trap distribution (e.g. single trapping level) 
must be tentatively assumed. The mentioned plots allow also the calculation of the trap 
depth E ~ ,  as well as the product z,,$ovo(Tc/To~". Some additional information can be 
obtained from the c'/2(T,)/to ratio, given by equation (45), which characterizes the 
carrier packet dispersion at the temperature T,. The value of E1n(Te)/zomay be deter- 
mined by fitting the mc curve with equation (31) ( i  the first approximation c(r) can be 
replaced by c(Te)). Then, one can estimate the product rmpo(Tc/To~" and the fre- 
quency factor uo (the factors r(c + 2) and (Te/T0).+b-c-3/2 in (45) should not differ 
greatly fromunity). It followsfrom equation (45) that the ratio E1p(Te)/zois proportional 
to (E/d)'I2, which in principle can be verified experimentally. However, equation (31) 
has a good accuracy only for small values of ~ l ~ ( T e ) / z o  (see section 4.2). One can note 
that essentially the same parameters can be found from the TOF measurements in the 
Gaussian transport regime at different temperatures (cf. [ S ,  91). 

The above-mentioned features of the TSC are believed to be rather general. The 
calculations given in appendix 2 imply that the TSC course depends in fact on the shape 
of the trap distribution in the energy region in the vicinity of the ct level (few kT).  It is 
quite possible that the real trap distribution can be approximated by the function (38) 
or (39) in thisrangeofenergies, though thismay not be trueforsomespecialdistributions. 

4. Numerical analysis 

4.1. Monte Carlo method 

The Monte Carlo technique has been utilized many times for simulations of isothermal 
multiple-trapping camer transport (e.g. [29,30]). In the present paper, this method is 
extended to non-isothermal transport, which enables verification of the accuracy of the 
formulae describingmc. Some results of the TSC simulation have already been published 
[l&lS], but the algorithm used has not been described in detail. 

As in the isothermal case, the simulation of individual carrier transport consists of 
calculating repeatedly the following random variables: the free-carrier lietime Atrr, the 
trap depth E and the carrier dwell-time At, in the trap. The corresponding distribution 
functions are: 

F~(E) = - Nt(&') ds' 
Ntot I' .p (47) 

Here, tt, and tr are the moments of carrier emission from the traps and of carrier capture, 
respectively. The approximation used in equation (46) follows from the fact that in the 
present calculations Atcr ttr According to the known theorem (e.g. [31]), the values of 
At,, E and At, can be'obtained by equating the above functions to ra eiom numbers 
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X', X" and X"', uniformly distributed in the interval (0, l) ,  and solving the resulting 
equations. Thecalculationsarecarriedoutfor thediscrete traplevel (38) andtheuniform 
trap distribution, i.e. the distribution (39) with c = 0. Then, one obtains 

At,, = -z,(ttr) In(X') (49) 

E = E? + kTJ" (50) 
b + 4  & 

= -In(X"'). I -  f. 

Equation(50) concernsthe uniformdistribution of traps; forthe monoenergetictrapping 
level, E = E ~ .  Equation (511, determining the time A&, is solved numerically as described 
in appendix 3. 

The free-carrier displacement and the resultingcurrent, flowing in the extemalcircuit 
from tu tort, + At,,, are given by Az = u(rtr)Aftr and I. = e/so, respectively. In the first 
equation, the variation of the function u(t) in the time interval Artr is disregarded, since 
At,, tu. For surface carrier generation, the initial position of the carrier is zo = 0. 
For uniform carrier generation in the sample, the initial position is calculated from zo = 
zoXo ( X o  = random number of the uniform distribution in (0,l)). The motion of the 
single carrier is terminated when it reaches the opposite surface ( z  = to) of the sample 
or, alternatively, when the carrier dwell-time in thesample exceeds thegiven finalvalue. 
The TSC curve is obtained by repeating t h i s  procedure for a large number N of carriers 
and averaging the induced current. Since the carrier position, as well as the depth of the 
trap capturing the camer, are monitored in the program, one can also obtain the spatial 
and energetic carrier distributions at given times. 

4.2. Comparison between analytical and numerical results 

The'rscpeakscalculated with the aidoftheMonte Carlo methodare presentedinfigures 
1 and 2 (points). The initial TSC spike occurring in the figures is an artifact. It results 
from averaging of the large initial current pulse I(r) = Io exp(-r/zto), 0 t S ro (so- 
called Hecht term), related to the prima3 trapping of the generated carriers. For 
comparison, the TSC curves obtained from approximate formulae (31) and (A1.3) are 
also shown in the figures (full curves). Several integrals in the equations determining 
the functions Q(T), z,(T), c(T) and E(T)  cannot be expressed exactly by elementary 
functions. These integrals were calculated numerically. 

Figure 1 shows the results obtained for the monoenergetic trap level for both surface 
and uniform volume generation of carriers. The TSC curves in figures l(a) and (b) are 
characterized by the same initial rise and the temperature T, = T(ze), but by different 
values of the ratio E1/2(T,)/zo (approximately equal to 0.3 and 0.09, respectively). The 
last quantity determines the extent of carrier thermalization at time z, (cf. section 3.1). 
It is seen that the approximate formulae for TSC become more accurate as the ratio 
E'/'(Te)/z0 decreases, and the accuracy is quite good for Er'*(Te)/zo = 0.09. The TSC 
peaks calculated for delta-like and uniform initial carrier distributions differ signifi- 
cantly, because in the first case carrier neutralization at the collecting electrode takes 
place at time t = re,  while in the second case it occurs in the time region 0 < t S z,. 

Figures 2(a) and (b) illustrate the influence of the temperature dependence of the 
free-carrier mobility (characterized by the value of the parameter a) on the TSC course 
for the single trapping level and the uniform trap distribution, respectively. In the 
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present case, the initial TSC rise is affected more strongly by the value of a than by the 
form of the trap distribution. The results given in figure 2(a) correspond to coulombic 
trapping centres, while the others correspond to neutral centres. The comparison of the 
curves denoted by (1) in figures l(b) and 2(a) shows that the TSC course is almost 
independent of the kind of trapping centres (i.e. of the value of the parameter b). The 
most significant deviations between both curves occur near their maxima, and do not 
exceed 2%. 

Figure 3 presents the time evolution of the total carrier density 

nt&, 0 = +,4 + %(L 4 
in the sample for the uniform trap distribution. For the values of the parameters assumed 
here we have O(f)  = to WE, which implies that n,,,,(r, r )  = n,(z, r). The free- and 
trapped-carrier densities cannot be calculated separately because of the small values of 



3978 W Tomaszewicz 

, Z / l 0  

Figore 3. Spatial carrier disaibution for several times obtained numerically (points) and 
calculated from equations (29) and (30) (full curves) for uniform trap distribution. The 
parameters are as in figure Z(b) (curve 1). 

~~ 
~- jpJ t=o.mr,/p 

Y 28 

29 

30 

Figure 4. Energetic distribution of carriers obtained 
numerically (points) and calculated as described in 
the text (Full line) for uniform distribution of traps. 

10-3 lo-' lo+ ~ l o r  10' The parameters correspond to those from figure 2(b) 
r7: 1t.r IXG/n, (curve I). 

n(z, t ) .  Despite some fluctuations of the numerical results, it seems that the shape of the 
carrier packet is nearly Gaussian, except for slight deviations at its front and tail. The 
drift velocity of the carrier packet increases in time, which is a specific feature of non- 
isothermal transport. 

Figure 4 shows the energetic distribution of the trapped carriers n; (2,  I, E ) ,  averaged 
over the sample thickness, for the uniform distribution of traps. Assuming full thermal 
guilibrium between free and trapped carriers, one should expect that 
n; (I, E )  oc exp[e/kT(t)] (cf. equations (2) and (4)). The proportionality constant in this 
relationship may be easily calculated, provided that carrier neutralization at the col- 
lecting electrode is negligible up to moment t. It is seen that the energetic distribution 
of the trapped carriers does not differ remarkably from the equilibrium distribution, 
through the dispersion of the numerical results is considerable for shallower traps. 

5. Conclusions 

In this paper, we have derived formulae describing the TSC for the case of multiple- 
trapping quasi-equilibrium carrier transport. We have also verified the analytical results 
by Monte Carlo calculations. The agreement is quite satisfactory, provided that carrier 
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thermalization is sufficiently quick. As far as possible applications of the theory are 
concerned, the following points should be re-emphasized 

(i) Theshape and the position ofthe'rscpeak aredeterminedmainly by the maximum 
trapdepth, as weU asby the formof the trapdistributionandthe temperature dependence 
of the free-carrier mobility. In order to obtain any information about the trap distri- 
bution, the temperature dependence of the free-camer mobility must be known apriori. 

(ii) Both the initial TSC rise and the dependence of the TSC maximum on the E/Bd 
ratio enable us to calculate the same parameters, characterizing carrier trapping and 
transport. 

(iii) In principle, the considered 'rsc technique and the TOF method are equivalent 
in the sense that they allow one to determine identical microscopic parameters. 

Finally, it should be noted that similar 'rsc peaks can occur for hopping carrier 
transport with a single transition rate [20]. At present, the theoretical description of the 
'rsc due to hopping transport is incomplete. This makes it difficult to discriminate 
between multiple-trapping and hopping transport modes and may introduce some ambi- 
guity in the interpretation of experimental results. 
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Appendix 1. TSE for uniform initial distribution of carriers 

We shall assume formally that the general solution of equation (26) is determined on 
the wholey axis. The solution can then be expressed by the Poisson integral (e.g. [26]): 

For uniform camer generation, the initial carrier distribution is given by n(z,  0) = 
noQ(0)(cf.section2.3),whichimpliesthatn*(y, 0) =noforO S y  S ro. Onecanassume 
additionaUythatn*(y,O) = Ofory <Oandy> re Thus,makinguseofequation(Al.l) 
and returning to z and t variables, we obtain the expression for the free-carrier density: 

n(z,  t)  = - (A1.2) 
2 

The trapped-carrier density is determined by the formula ni(z, t)  = n(r ,  t)[l - S( t ) ] /  
S( t ) .  The TSC can be calculated by inserting expression (A1.2) into equation (8). 
Assuming that E@(t)/C(t) Q I, after some transformations one gets 

(A1.3) 
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One can note that Iin(t) = Io@(t)u(t), similarly as for surface carrier generation. At the 
time given by equation (33), TSC drops nearly to zero. 

Appendix 2. The functions O(T), r,(T), c(T) and 6(T) for the model trap distributions 

Let us consider first the case of a single trapping level (38). From equations (4), (14), 
(15), (36) and (37) we find immediately that 

Q(T) = tm~o(T/To)"" exp(-q/kT) @(T)<l  (A24 
z,(T) = (l/tmv:)(T/To)b-7b exp(2cl/kT). ('42.2) 

Then, from equations (24), (34) and (35) we obtain 

(A2.3) 

where the new variables' = q/kl'". Integrals of this form are frequently encountered in 
TSC theory and can be calculated approximately with the aidof the asymptotic expansion 
(e.g. 1321) 

ds' = exp(-s)g(s) s*l 

where the function 

(A2.4) 

with r(. , .) the Euler gamma function. This formula can be easily derived by successive 
integrations by parts. If at 9 kT and Tis not too close to To, the upper Limit in the last 
integral in (A2.3) can be replaced by infinity and only the first term of expansion (A2.5) 
can be taken. Thus, we get 

C ( 0  = (ttovokT:/~,a)(T/To)'+'~ exp(-&T). ( A 2 4  
In an analogous way, we find from equations (E), (34) and (35) that 

f (T) = ( ? ~ O ~ O ~ ~ / & ~ ~ ) ( T / T O ) ~ + ~ + '  exp(-e,/kO. (A2.7) 

Let us consider now the case of the power trap distribution (39). Then, equations 
(4), (14), (36) and (37) give 

(c + 1) ($) -3'2 I" 
Q-'(T) = 

rmuo(kT,)C+' 
EP 

( c +  1) To O t l  e - @  

=-(y) TlOVO ($) exp($))JTrcexp(-r)dr (A2.8) 
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Z l T l l r ,  

'-. 
srrvr; 

-_ -.._ Figure A.1. Functiops C ( T )  and E(T) for uniform 
distribution of traps calculated from exact (full 
curves) and approximate (broken curves) formulae: 

?s 26 TI 20 29 30 r&To = r,&/To = 5 X lo-", voTo/B = 
5 X lo", E,/kT, = 30, TJT, = 5 ,  a = - 1.5, b = 0. 

---. 

Q/kT  

for O(T) 
making use of the formula 

1 where kT, = - E! and r = (E[  - E)/kT. Assuming that TcP T and 

we find 

In similar manner, from equations (4), (U), (36) and (37) we obtain 

(A2.10) 

(A2.11) 

The calculation of the functions C(T) and c(r) proceeds in identical way as for a 
monoenergetic trapping level. The final formulae are 

(A2.12) 

The accuracy of formulae (A2.12) and (A2.13) is illustrated by figure A.1. The cor- 
responding plots for a discrete trap level are very similar and are not presented here. 
Also,theplotsofthefunctionsO(T)andz,(T)arenotshownsince theirvaluescalculated 
from the approximate and exact formulae are almost the same. 
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Appendix 3. The algorithm for calculating Atr from equation (51) 

Making use of equations (4), (34) and (37), we rewrite equation (51) in the form 

(A3.1) 

(A3.2) 

(A3.3) 

(A3.4) 

Thus, the problem consists of calculating the s value, determined by equation (A3.1). 
The time At, is obtained next from the formula 

(A3.5) 

which results fromequations (A3.2) and (A3.3). 
To calculate the integral (A3.1), we utilize the asymptotic expansion (A2.4) with 

(A2.5). In the present calculations, the minimum value of s exceeded 20. Therefore, a 
relatively small number of terms in expansion (A2.5) was needed to ensure good accuracy 
(n = Sand 10 forb = Oand2,respectively). Aftersimpletransfomations,fromequation 
(A3.1) one obtains 

s = Wds)/Ql (A3.6) 

Atr = (E/Pk) (11s - l / S d  

where 

Q = P + exp(-so)g(so). (A3.7) 

Equation (A3.6) is easy to solve by the iteration method (e.g. [33]). Since the absolute 
value of the derivative 

d W ( s ) / Q l / h  = -(4 - b)/s s * l  (A3.8) 

is much less than unity, the convergence is very fast. To obtain the formula, determining 
the initial values* for the iteration procedure, one can note that the root of equation 
(A3.6) is an almost linear function of In(Q). Solving this equation for some range of the 
parameter Q and using the least-squares method, we get 

(A3.9) S* = -9.21 - 0.9@2h(Q) 

and 

s* = -4.85 - 0.949 In(Q) (A3.10) 

for b = 0 and b = 2, respectively. These formulae represent the best fit in the range 
15 G s* G 65 and their accuracy is better than 5%. In some calculations, more exact 
formulae fors*, involving also higher powers of In(Q), were used. 

The above procedure is not optimal when so - s Q 1. In such a case, because of a 
partial cancellation of the terms in equation (A3.9,  equation (A3.6) must be solved 
with very high accuracy. A more convenient procedure is then as follows. Introducing 
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the notation As = so - sand expanding the expression an the LHS of equation (A3.1) in 
a Taylor series, one obtains 

AS + [I + (4 - b)/~o] As2/2 + [I + 2(4 - b)/so 

+ (4 - b) (5 - b ) / ~ $ ]  As3/6 = R Ass91 

where 

R = Ps:-~ exp(so). 

Inverting the power series (see e.g. [34]) we get the formula 

s =SO - R + [l + (4 - b ) / ~ o ]  R2/2 - [l + 2(4 - b)/So 

+ (4 - b)(7 - 2b)/2sz] R3/3 Rs91 (A3.13) 

which represents the approximate solution of equation (A3.1). In the program, in 
order to select between both methods, parameter R given by equation (A3.12) is first 
calculated. If R < 0.01, which implies that Ass 0.01, the formula (A3.13) is used; 
otherwise equation (A3.6) is solved. 

(‘43.11) 

(A3.12) 
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